Amyloid Precursor Protein (APP) Mediated Regulation of Ganglioside Homeostasis Linking Alzheimer's Disease Pathology with Ganglioside Metabolism
نویسندگان
چکیده
Gangliosides are important players for controlling neuronal function and are directly involved in AD pathology. They are among the most potent stimulators of Aβ production, are enriched in amyloid plaques and bind amyloid beta (Aβ). However, the molecular mechanisms linking gangliosides with AD are unknown. Here we identified the previously unknown function of the amyloid precursor protein (APP), specifically its cleavage products Aβ and the APP intracellular domain (AICD), of regulating GD3-synthase (GD3S). Since GD3S is the key enzyme converting a- to b-series gangliosides, it therefore plays a major role in controlling the levels of major brain gangliosides. This regulation occurs by two separate and additive mechanisms. The first mechanism directly targets the enzymatic activity of GD3S: Upon binding of Aβ to the ganglioside GM3, the immediate substrate of the GD3S, enzymatic turnover of GM3 by GD3S was strongly reduced. The second mechanism targets GD3S expression. APP cleavage results, in addition to Aβ release, in the release of AICD, a known candidate for gene transcriptional regulation. AICD strongly down regulated GD3S transcription and knock-in of an AICD deletion mutant of APP in vivo, or knock-down of Fe65 in neuroblastoma cells, was sufficient to abrogate normal GD3S functionality. Equally, knock-out of the presenilin genes, presenilin 1 and presenilin 2, essential for Aβ and AICD production, or of APP itself, increased GD3S activity and expression and consequently resulted in a major shift of a- to b-series gangliosides. In addition to GD3S regulation by APP processing, gangliosides in turn altered APP cleavage. GM3 decreased, whereas the ganglioside GD3, the GD3S product, increased Aβ production, resulting in a regulatory feedback cycle, directly linking ganglioside metabolism with APP processing and Aβ generation. A central aspect of this homeostatic control is the reduction of GD3S activity via an Aβ-GM3 complex and AICD-mediated repression of GD3S transcription.
منابع مشابه
PS dependent APP cleavage regulates glucosylceramide synthase and is affected in Alzheimer's disease.
BACKGROUND Gangliosides were found to be associated with Alzheimer's disease (AD). Here we addressed a potential function of γ-secretase (presenilin) dependent cleavage of the amyloid-precursor-protein (APP) in the regulation of ganglioside de novo synthesis. METHODS To identify a potential role of γ-secretase and APP in ganglioside de novo synthesis we used presenilin (PS) deficient and APP ...
متن کاملGanglioside metabolism in a transgenic mouse model of Alzheimer's disease: expression of Chol-1α antigens in the brain
The accumulation of Aβ (amyloid β-protein) is one of the major pathological hallmarks in AD (Alzheimer's disease). Gangliosides, sialic acid-containing glycosphingolipids enriched in the nervous system and frequently used as biomarkers associated with the biochemical pathology of neurological disorders, have been suggested to be involved in the initial aggregation of Aβ. In the present study, w...
متن کاملBrain gangliosides of a transgenic mouse model of Alzheimer's disease with deficiency in GD3-synthase: expression of elevated levels of a cholinergic-specific ganglioside, GT1aα
In order to examine the potential involvement of gangliosides in AD (Alzheimer's disease), we compared the ganglioside compositions of the brains of a double-transgenic (Tg) mouse model [APP (amyloid precursor protein)/PSEN1 (presenilin)] of AD and a triple mutant mouse model with an additional deletion of the GD3S (GD3-synthase) gene (APP/PSEN1/GD3S(-/-)). These animals were chosen since it wa...
متن کاملLipid Rafts and Alzheimer’s Disease: Protein-Lipid Interactions and Perturbation of Signaling
Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein-protein interactions and for cellular signaling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses), axonal development and maintenance of synaptic integrity, raf...
متن کاملAPP as a Protective Factor in Acute Neuronal Insults
Despite its key role in the molecular pathology of Alzheimer's disease (AD), the physiological function of amyloid precursor protein (APP) is unknown. Increasing evidence, however, points towards a neuroprotective role of this membrane protein in situations of metabolic stress. A key observation is the up-regulation of APP following acute (stroke, cardiac arrest) or chronic (cerebrovascular dis...
متن کامل